Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 46(2): 227-236, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36478291

RESUMO

The demand for D-Valine increases because of its wide range of use. A whole-cell biocatalyst for the production of D-Valine from 5'-isopropyl hydantoin by co-expression of the D-hydantoinase (hyd) gene from Pseudomonas putida YZ-26 and D-N-carbamoylase (cab) gene from Sinorhizobium sp. SS-ori in Escherichia coli BL 21 (DE3) was developed. The expression condition of the engineered strain HC01 co-expressing D-hydantoinase (HYD) and D-N-carbamoylase (CAB) was optimized. HYD and CAB reached the highest activities (4.65 and 0.75 U/ml-broth) after inducing for 8-12 h. Subsequently, the cells of HC01 were immobilized in the form of Ca2+-alginate beads, and the optimal conditions for immobilizing were obtained as 2.5% gel concentration and 0.029 g/mL cell concentration in the presence of 3% CaCl2. The thermostability of immobilized cells was 5 ℃ higher than that of free cells in the same condition. And the divalent metal ions such as Mn2+, Mg2+, Cu2+, Co2+, and Ni2+ did not significantly affect the enzymatic activity of HYD and CAB in immobilized cells. Bioconversion rate reached to 91% after a 42-h reaction when the substrate concentration was 50 mmol/L with the initial pH of 9.0 under the nitrogen protection. This method provides D-Valine with optical purity of 97% and an overall yield of 72%. Furthermore, the immobilized cells can be reused for more than 7 cycles and maintain their capacity of over 70%. Hence the immobilized cells of engineered strain HC01 could potentially be used to prepare D-Valine.


Assuntos
Amidoidrolases , Valina , Amidoidrolases/química , Escherichia coli/genética , Escherichia coli/metabolismo
2.
High Throughput ; 9(1)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059545

RESUMO

D-hydantoinases catalyze an enantioselective opening of 5- and 6-membered cyclic structures and therefore can be used for the production of optically pure precursors for biomedical applications. The thermostable D-hydantoinase from Geobacillus stearothermophilus ATCC 31783 is a manganese-dependent enzyme and exhibits low activity towards bulky hydantoin derivatives. Homology modeling with a known 3D structure (PDB code: 1K1D) allowed us to identify the amino acids to be mutated at the substrate binding site and in its immediate vicinity to modulate the substrate specificity. Both single and double substituted mutants were generated by site-directed mutagenesis at appropriate sites located inside and outside of the stereochemistry gate loops (SGL) involved in the substrate binding. Substrate specificity and kinetic constant data demonstrate that the replacement of Phe159 and Trp287 with alanine leads to an increase in the enzyme activity towards D,L-5-benzyl and D,L-5-indolylmethyl hydantoins. The length of the side chain and the hydrophobicity of substrates are essential parameters to consider when designing the substrate binding pocket for bulky hydantoins. Our data highlight that D-hydantoinase is the authentic dihydropyrimidinase involved in the pyrimidine reductive catabolic pathway in moderate thermophiles.

3.
Electron. j. biotechnol ; 19(3): 43-48, May 2016. ilus
Artigo em Inglês | LILACS | ID: lil-787006

RESUMO

Background: D-Hydroxyphenylglycine is considered to be an important chiral molecular building-block of antibiotic reagents such as pesticides, and β-lactam antibiotics. The process of its production is catalyzed by D-hydantoinase and D-carbamoylase in a two-step enzyme reaction. How to enhance the catalytic potential of the two enzymes is valuable for industrial application. In this investigation, an Escherichia coli strain genetically engineered with D-hydantoinase was immobilized by calcium alginate with certain adjuncts to evaluate the optimal condition for the biosynthesis of D-carbamoyl-p-hydroxyphenylglycine (D-CpHPG), the compound further be converted to D-hydroxyphenylglycine (D-HPG) by carbamoylase. Results: The optimal medium to produce D-CpHPG by whole-cell immobilization was a modified Luria-Bertani (LB) added with 3.0% (W/V) alginate, 1.5% (W/V) diatomite, 0.05% (W/V) CaCl2 and 1.00 mM MnCl2.The optimized diameter of immobilized beads for the whole-cell biosynthesis here was 2.60 mm. The maximized production rates of D-CpHPG were up to 76%, and the immobilized beads could be reused for 12 batches. Conclusions: This investigation not only provides an effective procedure for biological production of D-CpHPG, but gives an insight into the whole-cell immobilization technology.


Assuntos
Escherichia coli , Amidoidrolases , Glicina/análogos & derivados , Células Imobilizadas , Glicina/biossíntese
4.
Appl Biochem Biotechnol ; 179(1): 1-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26821258

RESUMO

An active D-hydantoinase from Pseudomonas fluorescens was heterogeneously overexpressed in Escherichia coli BL21(DE3) and designated as D-PfHYD. Sequence and consensus analysis suggests that D-PfHYD belongs to the dihydropyrimidinase/hydantoinase family and possesses catalytic residues for metal ion and hydantoin binding. D-PfHYD was purified to homogeneity by nickel affinity chromatography for characterization. D-PfHYD is a homotetramer with molecular weight of 215 kDa and specific activity of 20.9 U mg(-1). D-PfHYD showed the highest activity at pH 9.0 and 60 °C. Metal ions such as Mn(2+), Fe(2+), and Fe(3+) could activate D-PfHYD with 20 % improvement. Substrate specificity analysis revealed that purified D-PfHYD preferred aliphatic to aromatic 5'-monosubstituted hydantoins. Among various strategies tested, chaperone GroES-GroEL was efficient in improving the soluble expression of D-PfHYD. Employing 1.0 g L(-1) recombinant E. coli BL21(DE3)-pET28-hyd/pGRO7 dry cells, 100 mM isobutyl hydantoin was converted into D-isoleucine with 98.7 % enantiomeric excess (ee), isolation yield of 78.3 %, and substrate to biocatalyst ratio of 15.6. Our results suggest that recombinant D-PfHYD could be potentially applied in the synthesis of D-amino acids.


Assuntos
Amidoidrolases/química , Aminoácidos/biossíntese , Pseudomonas fluorescens/enzimologia , Amidoidrolases/biossíntese , Amidoidrolases/genética , Aminoácidos/química , Clonagem Molecular , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica , Hidantoínas/química , Hidantoínas/metabolismo , Especificidade por Substrato
5.
J Biosci Bioeng ; 118(1): 78-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24508023

RESUMO

D-P-Hydroxyphenylglycine (D-HPG) is a precursor required for the synthesis of semi-synthetic antibiotics. This unnatural amino acid can be produced by a transformation reaction mediated by D-hydantoinase (D-HDT) and d-amidohydrolase. In this study, a method was developed to integrate production and immobilization of recombinant D-HDT in vivo. This was approached by first fusion of the gene encoding D-HDT with phaP (encoding phasin) of Ralstonia eutropha H16. The fusion gene was then expressed in the Escherichia coli strain that carried a heterologous synthetic pathway for polyhydroxyalkanoate (PHA). As a result, d-HDT was found to associate with isolated PHA granules. Further characterization illustrated that D-HDT immobilized on PHA exhibited the maximum activity at pH 9 and 60°C and had a half-life of 95 h at 40°C. Moreover, PHA-bound d-HDT could be reused for 8 times with the conversion yield exceeding 90%. Overall, it illustrates the feasibility of this approach to facilitate in vivo immobilization of enzymes in heterologous E. coli strain, which may open a new avenue of enzyme application in industry.


Assuntos
Amidoidrolases/metabolismo , Escherichia coli/genética , Amidoidrolases/genética , Cupriavidus necator/genética , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Escherichia coli/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Corpos de Inclusão , Lectinas de Plantas/genética , Poli-Hidroxialcanoatos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...